This is error because the dataset which you are considering consist of na value. i.e null value
while performing matrix multipication and other any operation with null value create error. To overcome this problem you need to select one of the follow method: i) Either use rm=na while taking input. i.e mean remove null values. ii) Take the dataset which doesn't consist of null value. i.e clean dataset. No need to go through the document below: It is the reference i followed and search and paste for the future reference at that time. I saw high view in this page so i share my experience with you ppl. I am trying the below R script to built logistic regression model using RHadoop (rmr2, rhdfs packages) on an HDFS data file located at "hdfs://:/somnath/merged_train/part-m-00000" and then testing the model using a test HDFS data file at "hdfs://:/somnath/merged_test/part-m-00000". We are using CDH4 distribution with Yarn/MR2 running parallel to MR1 supported by Hadoop-0.20. And using the hadoop-0.20 mapreduce and hdfs versions to run the below RHadoop script as Sys.setenv commands shown below. However, whenever I am running the script, I am facing the below error with very little luck to bypass it. I would appreciate if somebody point me to the possible cause of this error which seems to be due to wrong way of lapply call in R without handling NA arguments.
Below is my R-script :
NOTE: I have set following environment variables for HADOOP as follows in root ~/.bash_profile
SAMPLE TRAIN DATASET
SAMPLE TEST DATASET
|
|||
Thursday, 30 October 2014
Error in FUN(X[[2L]], …) : Sorry, parameter type `NA' is ambiguous or not supported
Linear Regression in R Mapreduce(RHadoop)
I m new to RHadoop and also to RMR...
I had an requirement to write a Mapreduce Job in R Mapreduce. I have Tried writing but While executing this it gives an Error.
Tring to read the file from hdfs
Error:
Code :
|
|||||||||||||
|
Thursday, 9 October 2014
select
> example(select) select> #data.frame select> where(mtcars, cyl>4 & mpg > 15) mpg cyl disp hp drat wt qsec vs am gear carb Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4 Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4 Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1 Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2 Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1 Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4 Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4 Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3 Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3 Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3 Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2 AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2 Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2 Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4 Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6 select> #pipe select> as.data.frame(where(input(mtcars), cyl > 4 & mpg > 15)) mpg cyl disp hp drat wt qsec vs am gear carb Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4 Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4 Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1 Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2 Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1 Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4 Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4 Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3 Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3 Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3 Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2 AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2 Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2 Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4 Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6 select> # select two columns select> as.data.frame(transmute(input(mtcars), cyl, mpg)) cyl mpg 1 6 21.0 2 6 21.0 3 4 22.8 4 6 21.4 5 8 18.7 6 6 18.1 7 8 14.3 8 4 24.4 9 4 22.8 10 6 19.2 11 6 17.8 12 8 16.4 13 8 17.3 14 8 15.2 15 8 10.4 16 8 10.4 17 8 14.7 18 4 32.4 19 4 30.4 20 4 33.9 21 4 21.5 22 8 15.5 23 8 15.2 24 8 13.3 25 8 19.2 26 4 27.3 27 4 26.0 28 4 30.4 29 8 15.8 30 6 19.7 31 8 15.0 32 4 21.4 select> # create additional column select> as.data.frame(transmute(input(mtcars), ratio = cyl/mpg, .cbind = TRUE)) mpg cyl disp hp drat wt qsec vs am gear Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 carb ratio Mazda RX4 4 0.2857143 Mazda RX4 Wag 4 0.2857143 Datsun 710 1 0.1754386 Hornet 4 Drive 1 0.2803738 Hornet Sportabout 2 0.4278075 Valiant 1 0.3314917 Duster 360 4 0.5594406 Merc 240D 2 0.1639344 Merc 230 2 0.1754386 Merc 280 4 0.3125000 Merc 280C 4 0.3370787 Merc 450SE 3 0.4878049 Merc 450SL 3 0.4624277 Merc 450SLC 3 0.5263158 Cadillac Fleetwood 4 0.7692308 Lincoln Continental 4 0.7692308 Chrysler Imperial 4 0.5442177 Fiat 128 1 0.1234568 Honda Civic 2 0.1315789 Toyota Corolla 1 0.1179941 Toyota Corona 1 0.1860465 Dodge Challenger 2 0.5161290 AMC Javelin 2 0.5263158 Camaro Z28 4 0.6015038 Pontiac Firebird 2 0.4166667 Fiat X1-9 1 0.1465201 Porsche 914-2 2 0.1538462 Lotus Europa 2 0.1315789 Ford Pantera L 4 0.5063291 Ferrari Dino 6 0.3045685 Maserati Bora 8 0.5333333 Volvo 142E 2 0.1869159 select> # summaries select> as.data.frame(transmute(input(mtcars), mean(cyl), mean(mpg))) mean.cyl. mean.mpg. 1 6.1875 20.09062 select> # summaries by groups select> as.data.frame(transmute(group(input(mtcars), cyl), mean(mpg))) cyl mean.mpg. 1 6 19.74286 1.1 4 26.66364 1.2 8 15.10000
Subscribe to:
Posts (Atom)
mapreduce(input = as.matrix(hdfs.read.text.file(r.file)),map = function(.,M) { keyval(1,lapply(as.numeric(M[,-1] %*% t(weight)), function(z) 1/(1 + exp(-z))))} )))
where the input to map is a matrix M read from a file stored in HDFS. Most probably the call to lapply may not be getting the expected input from the matrix. I have added sample train and test data inputs from HDFS files to explain better – somnathchakrabarti Aug 11 at 8:57traceback()
,debug()
,debugonce()
andbrowser()
can yield insightful. – Roman Luštrik Aug 11 at 10:25